Class: B Sc III (Sem V)

Subject: Condensed Matter Physics-I

Tentative lesson plan from August 2019 to November 2019

TIME PERIOD	TOPICS TO BE COVERED
Week 1	Crystal Structure. Symmetry operations for a two dimensional crystal.
Week 2	Two dimensional Bravais lattices,
Week 3	Three dimensional Bravais lattices" Basic primitive cells
Week 4	Crystal planes and Miller indices.
Week 5	Diamond and NaCl structure.
Week 6	Packing fraction for Cubic and hexagonal closed packed structure.
Week 7	Crystal Diffraction: Bragg's Law,
Week 8	Experimental methods for crystal structure studies,
Week 9	laue equations, Reciprocal lattices of SC,
Week 10	Reciprocal lattices of BCC and FCC,
Week 11	Bragg's Law in reciprocal lattice.
Week 12	Brillouin zones and its derivation in two dimensions,
Week 13	Structure factor and atomic form factor

principal

Govt. College

Ropar

Principal

Govt. College

Ropar

HOD, Physics Department

B Sc III (Sem V)

Subject: ELECTRONICS-I (ELECTRONICS AND SOLID STATE DEVICES)

Tentative lesson plan from August 2019 to November 2019

Two weeks left for MST tentative and one week for revision/queries for MST.

TIME PERIOD	TOPICS TO BE COVERED
Week 1	Concept of current and voltage sources, p-n junction, Biasing of
	diode, V-A characteristics. Diode equation, Breakdown diodes: Zener
Week 2	breakdown and avalanchè breakdown,
Week 3	Zener diode. Rectification: half wave, full wave rectifiers
Week 4	bridge rectifiers, Qualitative analysis of Filter circuits (RC LC and π filters
Week 5	Efficiency, Ripple factor, Voltage regulation.
Week 6	Voltage multiplier circuits. Junction transistor: structure and working
Week 7	relation between different currents in transistors,
Week 8	Sign conventions. Amplifying action, Different configurations of transistor and their comparison,
Week 9	CB and CE characteristics.Structure, Characteristics, operation of FET,
Week 10	Characteristics, operation of JFET and MOSFET, Pinch off voltage,
Week 11	Enhancement and Depletion mode, Comparison of JFETs an MOSFETs,
Week 12	Difference in field effect transistor and junction type transistor.
Week 13	Principal decine devices: Photo-conductive cell, Photodiode, Sola

Ropar

HOD, Physics Department

B Sc III (Sem V)

Subject: : NUCLEAR AND RADIATION PHYSICS

Tentative lesson plan from August 2019 to November 2019

Two weeks left for MST tentative and one week for revision/queries for MST.

TIME PERIOD	TOPICS TO BE COVERED
Week 1	Constituents of nucleus and their intrinsic properties, Qualitative facts about size, mass, density, energy, charge.
Week 2	Binding energy, angular momentum, magnetic moment and electric quadruple moments of the nucleus,
Week 3	Wave mechanical properties of nucleus, average binding energy and its variation with mass numbers,
Week 4	Properties of nuclear forces, Non existence of electrons in the nucleus and neutron-proton model,
Week 5	Liquid drop model and semi empirical mass formula, Conditions of nuclear stability,
Week 6	Fermi gas model. Nuclear shell model. Experimental evidence o magic numbers and its explanation.
Week 7	Radioactivity. Modes of decay and successive radioactivity.
Week 8	Alpha emission. Electron emission, Positron emission. Electro capture
Week 9	Gamma-ray emission, Internal conversion, Qualitative discussio of alpha.
Week 10	beta and gamma spectra, Geiger-Nuttal rule, Neutrino hypothes of beta decay
Week 11	Evidence of existence of neutrino, Qualitative discussion of alphand beta decay theories
Week 12	Nuclear reactions. Reaction cross section, Conservation laws. Kinematics of nuclear reaction,
Week 13	Q-value and its physical significance, Compound nucleu Possible reaction with high energy particles

HOD, Physics Department

B Sc III (Sem VI)

Subject: CONDENSED MATTER PHYSICS-II

Tentative lesson plan from March 2020 to June 2020

Two weeks left for MST tentative and one week for revision/queries for MST.

Two weeks left for MST tentative and one week for revision/queries for MST.		
TIME PERIOD	TOPICS TO BE COVERED	
Week 1	Lattice vibrations, Concepts of phonons,	
Week 2	Scattering of protons by phonons	
Week 3	Vibration of mono-atomic,	
Week 4	Vibration of di-atomic, linear chains Density of modes,	
Week 5	Einstein and Debye models of specific heat	
Week 6	Free electron model of metals. Free electron,	
Week 7	Fermi gas and Fermi energy.	
Week 8	Band theory, Kronig-Penney Model. Metals and insulators,	
Week 9	Conductivity and its variation with temperature in	
	semiconductors,	
Week 10	Fermi levels in intrinsic and extrinsic semiconductors	
Week 11	Qualitative discussion of band gap in semiconductors,	
Week 12	superconductivity, Magnetic field effect in superconductors	
Week 13	BCS theory. Thermal properties of superconductors	

B.S. Satyal

HOD. Physics Department

B Sc III (Sem VI)

Subject: Electronics -II

Tentative lesson plan from March 2020 to June 2020

TIME PERIOD	TOPICS TO BE COVERED
·	Thyristor, SCR, TRIAC, DIAC: Construction, Characteristics and
Week 1	Thyristor, SCR, TRIAC, DIAC. Constitutions, Operation; Comparison between transistors and thyristors; Difference
Week 2	
Week 3	UJT: its construction, Equivalent circuit, Characteristics and parameters, uses Thermistor: Types, Construction, Characteristics, Uses,
Week 4	Advantages over other temperature sensing devices,IMPATT and
Week 5	TRADATT devices.
Week 6	PIN diode: Construction, Charatersitics, Applications Gunn effect and diodes: Mechanism, Characteristic, Negative
Week 7	differential resistivity Domain formation, Tunnel diode: Tunneling Phenomenor
Week 8	Operation, Applications Merits and Drawbacks ,Transistor biasing
Week 9	Stabilization of operating point, Stabilization of operating point, Stabilization of operating point, Stabilization of operating point,
Week 10	resistor, Voltage divider blasing circuit
Week 11	Equivalent circuits, Determination of current gain, Power gain, Input impedance, FET amplifier: Voltage Current ar
Week 12	Power gain,
Week 13	Feed back in amplifiers: Types & advantage of fregution feedback. Emitter follower as negative feed back circuit

Principal.

Govie College

HOD, Physics Departmenyt

B Sc III (Sem VI)

Subject: NUCLEAR AND PARTICLE PHYSICS

Tentative lesson plan from March 2020 to June 2020

Two weeks left for MST tentative and one week for revision/queries for MST.

Two weeks left for MST tentative and one week for revision/queries for MST.		
TIME PERIOD	TOPICS TO BE COVERED	
Week 1	Energy loss due to ionization (Bethe's formula), Energy loss of electrons,	
	Bremsstrahlung, Interactions of gamma rays with matter.	
Week 2		
Week 3	Radiation loss by fast electrons, Radiation length, Electron-positron	
	annihilation,	
Week 4	Cyclotron. Betatron, Qualitative discussion of Synchrotron,.	
Week 5	Collider machines and linear accelerator, Ionization chamber,	
Week 6	Proportional counter, GM counter, Scintillation counter	
Week 7	Solid state detectors, Elementary particles and their masses,	
Week 8	Decay modes, Classification of these particles,	
Week 9	Types of interactions. Conservation laws and quantum numbers,	
Week 10	Concepts of isospin. Strangeness, Parity,	
	Charge conjugation. Antiparticles, Gell-Man method,	
Week 11	Decay and strange particles. Particle symmetry,	
Week 12	Introduction to quarks and qualitative discussion of the quark model.	
Week 13	Introduction to quarks and quantative diseases.	
	B.S. Salya (5) w ()	

Principal Sout College

HOD, Physics Department

Popar .

Principal Govt. College

Ropar